BA-06B 指纹识别模块

目录

第一章	
1.1 产品原理介绍	
1.2 产品规格	
第二章 硬件接口	
2.1 上电延时时间	
2.2 接口定义(TTL 电平)	
2.3 接口定义(USB 电平)	
第三章 系统资源	
3.1 缓冲区	
3.1.1 图像缓冲区	
3.1.2 特征文件缓冲区	
3.2 指纹库	
3.3 系统配置参数	
3.3.1 波特率控制(参数序号: 4)	
3.3.2 安全等级(参数序号: 5)	5
3.3.3 数据包长度(参数序号: 6)	5
第四章 通讯协议	6
1. 数据包格式	<i>6</i>
2. 数据包的校验与应答	6
第五章 模块指令系统	7
1 指纹处理类指令	
1) 获取图像 ZAZ_GetImg	7
2)图像生成特征 ZAZ_GenChar	7
3)特征合成模板 ZAZ_RegModel	8
4)上传特征或模板 ZAZ_UpChar	8
5)下载特征或模板 ZAZ_DownChar	
6)存储模板 ZAZ_Store	
7)读出模板 ZAZ_LoadChar	
8)删除模板 ZAZ_DeletChar	
9)清空指纹库 ZAZ_Empty	
10)精确比对两枚指纹特征 ZAZ_Match	10 11
11)投票指数 ZAZ_SeatCli	
2 系统设置类指令	
13)设置模块系统基本参数 ZAZ_SetSysPara	
15)读系统参数 ZAZ_ReadSysPara	
14)写记事本 ZAZ_WriteNotepad	
16)读记事本 ZAZ_ReadNotepad	
17) 读取指纹库列表 ZAZ_ ReadFpflash	13
第六章 开发流程图	14
第七音	15

第一章 概述

BA-06B指纹模块博奥智能推出的,以高速DSP处理器为核心,结合具有公司自主知识产权的电容指纹传感器,具有指纹录入、图像处理、指纹比对、搜索和模板储存等功能的智能型模块。

1.1 产品原理介绍

指纹模块操作流程如下:

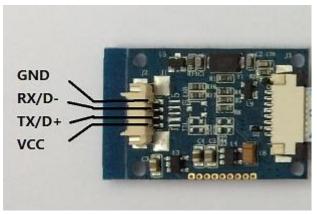
标准流程	打开设备→获取指纹图像→生成特征1→获取指纹图像→生成特征2→合成 指纹模版→存储特征1到指纹数据库
精简流程	打开设备→获取指纹图像→生成特征1→存储特征1到指纹数据库

操作	搜索指纹
标准流程	打开设备→获取指纹图像→生成特征1→搜索指纹库→返回位置及得分

操作	比对指纹
标准流程	打开设备→获取指纹图像→生成特征1→加载指纹库特征2→对比特征1与特
	征2→返回位置及得分

1.2 产品规格

电气参数	
供电电压	5V (典型值)
供电电流	100mA(典型值),峰值电流: 120mA
指纹图像录入时间	<0.5秒
工作温度	-40°C −+70°C
存储温度	-40°C −+80°C
工作湿度	20%—90%
存储湿度	16%—95%
性能参数	
采集窗口尺寸	20.4MM*33.4MM
有效图像尺寸	11.22MM*15.52MM
图像大小	256*288pixel
图像像素	500DPI
匹配方式	比对方式(1:1) 搜索方式(1:N)
指纹特征	512字节 有效数据是256字节
指纹模板	512字节 有效数据是512字节
存储容量	1000枚
安全等级	五级(从低到高: 1、2、3、4、5)
认假率 (FAR)	<0.001% (安全等级为3时)
拒真率 (FRR)	<0.005% (安全等级为3时)
搜索时间	<1.0秒 (1:1000时,均值)
通讯接口	UART(TTL逻辑电平)或者USB1.1/2.0兼容
通讯波特率 (UART)	(9600 ×N)bps, 其中№1—12(默认出厂№6,即57600bps)


注: 指纹特征和指纹模板的实际大小均为 512 字节,只是指纹特征内只有 256 字节数据有效指纹模板是两个指纹特征合并而来,所以 512 字节数据均为有效数据。

第二章 硬件接口

2.1 上电延时时间

模块上电后,约需 500mS 时间进行初始化工作。在此期间,模块不能响应上位机命令。

2.2 接口定义(TTL 电平)

串口接口引脚定义如下:

引脚号	名 称	类型	功 能 描 述
1	Vcc	in	电源正输入端。(5v)
2	TXD	In/Out	模块串口发送端
3	RXD	In/Out	模块串口接收端
4	GND	_	信号地。内部与电源地连接。

注: 类型栏中, in 表示输入到模块, out 表示从模块输出

2.3 接口定义(USB电平)

引脚号	名 称	类型	功 能 描 述
1	VCC	in	电源正输入端。
2	D+	In/Out	USB信号线
3	D-	In/Out	USB信号线
4	GND	_	信号地。内部与电源地连接。

注: 类型栏中, in 表示输入到模块, out 表示从模块输出

第三章 系统资源

为满足不同客户需求,模块系统提供了大量资源提供给用户系统使用。

3.1 缓冲区

模块 RAM 资源如下:

一个图像缓冲区 ImageBuffer[256*288]

两个特征文件缓冲区 CharBuffer1[512] 和 CharBuffer2[512]。

用户可以通过指令读写任意一个缓冲区。图像缓冲区和特征文件缓冲区内容断电不保存。

3.1.1 图像缓冲区

图像缓冲区 ImageBuffer用于存放图像数据和模块内部图像处理使用。 通过UART传输图像为了加快速度,只用像素字节高四位,每字节表示两个像素,即16级灰度 通过 USB 口传送则是整8位像素,即 256 灰度等级。

3.1.2 特征文件缓冲区

特征文件缓冲区 CharBuffer1 或 CharBuffer2 存放特征文件或模板特征文件。

特征文件和模板文件均为512字节大小,只是特征文件有效数据是256字节,而模板文件是两个特征文件的合成,是取两个特征文件的并集,所以有效数据是512字节

3.2 指纹库

模块在FLASH中开辟了一段存储区域作为指纹模板存放区即指纹库。指纹库数据是断电保护的。 指纹模板按照序号存放,若指纹库容量为 N,则指纹模板在指纹库中的序号定义为:0、1、2———N-2、N-1。用户只能根据序号访问指纹库内容。

3.3 系统配置参数

为方便用户使用,模块开放部分系统参数,允许用户通过指令,单个修改指定的参数数值。参见设置模块系统基本参数指令 SetSysPara 和读系统参数指令 ReadSysPara。

上位机发修改系统参数指令时,模块先按照原配置进行应答,应答之后修改系统设置, 并将配置记录于FLASH,系统下次上电后,将按照新的配置工作。

3.3.1 波特率控制(参数序号: 4)

该参数控制模块与上位机通过 UART 通讯时的通讯波特率,若参数值为 N(N 取值范围 $1\sim12$),对应波特率为 (9600 \times N) bps。

3.3.2 安全等级(参数序号: 5)

该参数控制指纹比对和搜索时比对阀值,分为 5 级,取值范围为: 1、2、3、4、5。 安全等级为 1 时认假率最高,拒认率最低。安全等级为 5 时认假率最低,拒认率最高。

3.3.3 数据包长度(参数序号: 6)

该参数控制模块与上位机通讯时,每次传送时允许数据中包内容的最大长度,取值 范围

第四章 通讯协议

通信协议定义了模块与上位机之间信息交换的规则。无论硬件上采用 UART还是 USB接口型式,都采用同一套通讯协议和指令集。

包头 地址码 包标识 包长度 包内容(指令/数据/参数) 校验和

1. 数据包格式

模块与上位机通讯,对命令、数据、结果的接收和发送,都采用数据包的形式进行。

数据包格式:

	九四九十一		`	已以汉	区内在《旧文/数加/参数》	4又3四4日			
数据包试	羊细定义表								
名称	符号	长度	说明						
包头	Start	2 字节	固定	固定为0xEF01,传送时高字节在前。					
地址码	ADDER	4 字节		默认值为0xFFFFFFFF,用户可通过指令生成新地址。模块 会拒绝地址错误的数据包。传送时高字节在前。					
包标识	PID	1 字节	01H 02H 07H	r <u>令包(command packet)。</u> 在据包(Data packet),且有后续 能单独进入执行流程,必须跟 面。 [答包(ACK packet)可以有	在指令包或				
			08H	表示是最 packet)。	后一个数据包,即结束包(End	Data			
包长度	E LENGTH	2 字节	最大值为256字节;包长度指的是包内容(指令/数据)的 长度加上效验和的长度(即包内容长度+2)。长度以字节 为单位,传送时高字节在前。						
包内容	F DATA	_	可以是指令、数据、指令的参数、应答结果等。(指纹特征值、指纹模板都是数据)						
校验和	SUM	2 字节	包标示、包长度和包内容的所有字节的算术累计和,超过 2 字节的进位忽略。传送时高字节在前。						

2. 数据包的校验与应答

指令只能由上位机发给模块,模块向上位机应答。

模块收到指令后,会通过应答包,将有关命令执行情况与结果上报给上位机。应答包含有参数, 并可跟后续数据包。上位机只有在收到模块的应答包后才能确认模块的收包情况与指令执行情况。 应答包的内容包括一个字节的确认码(必须有)和可能有的返回参数。

第五章 模块指令系统

模块有以下指令。应用程序通过指令的不同组合,实现各种指纹识别功能。所有指令/数据的 传输均以数据包的形式传递。

1 指纹处理类指令

1) 获取图像 ZAZ_GetImg

功能说明:探测手指,探测到后录入指纹图像存于 ImageBuffer,并返回录入成功确认码。 若探测不到手指,直接返回无手指确认码。

输入参数: none 返回参数: 确认字 指令代码: 01H 指令包格式:

2 bytes	4bytes	1 byte	2 bytes	1 byte	2 bytes
包头	模块地址	包标识	包长度	指令码	校验和
0xEF01	Xxxx	01H	00H 03H	01H	00H 05H

应答包格式:

2 bytes	4bytes	1 byte	2 bytes	1 byte	2 bytes
包头	模块地址	包标识	包长度	确认码	校验和
0xEF01	Xxxx	07H	00H 03H	xxH	Sum

注: 确认码=00H 表示录入成功; 确认码=01H 表示收包有错;

确认码=02H 表示传感器上无手指; 确认码=03H 表示录入不成功;

2)图像生成特征 ZAZ_GenChar

功能说明:将ImageBuffer中的原始图像生成指纹特征,文件存于CharBuffer1或

CharBuffer2。

输入参数: BufferID(特征缓冲区号)

返回参数: 确认字 指令代码: 02H 指令包格式:

2 bytes	4bytes	1 byte	2 bytes	1 byte	1 byte	2 bytes
包头	模块地址	包标识	包长度	指令码	缓冲区号	校验和
0xEF01	XXXX	01H	00H 04H	02H	BufferID	sum

注:缓冲区CharBuffer1、CharBuffer2的BufferID分别为1h 和2h,如果指定其它值,按照 CharBuffer2 处理。

应答包格式:

2 bytes	4bytes	1 byte	2 bytes	1 byte	2 bytes
包头	模块地址	包标识	包长度	确认码	校验和
0xEF01	xxxx	07H	00H 03H	XxH	sum

注: 确认码=00H 表示生成特征成功; 确认码=01H 表示收包有错;

确认码=06H 表示指纹图像太乱而生不成特征;

确认码=07H 表示指纹图像正常,但特征点太少而生不成特征;

3)特征合成模板 ZAZ_RegModel

功能说明:将 CharBuffer1与 CharBuffer2中的特征文件合并生成模板,结果存于CharBuffer1与CharBuffer2(两者内容相同)。

输入参数: none 返回参数: 确认字 指令代码: 05H

指令包格式:

2 bytes	4bytes	1 byte	2 bytes	1 byte	2 bytes
包头	模块地址	包标识	包长度	指令码	校验和
0xEF01	xxxx	01H	00H 03H	05H	00H 09H

应答包格式:

2 bytes	4bytes	1 byte	2 bytes	1 byte	2 bytes
包头	模块地址	包标识	包长度	确认码	校验和
0xEF01	xxxx	07H	00H 03H	xxH	sum

注: 确认码=00H 表示合并成功;

确认码=01H 表示收包有错;

确认码=0aH 表示合并失败(两枚指纹不属于同一手指)

4) 上传特征或模板 ZAZ_UpChar

功能说明: 将特征缓冲区CharBuffer1 或CharBuffer2 中的特征文件上传给上位机

输入参数: BufferID(缓冲区号)

返回参数: 确认字 指令代码: 08H

指令包格式:

2 bytes	4bytes	1 byte	2 bytes	1 byte	1 byte	2 bytes
包头	模块地址	包标识	包长度	指令码	缓冲区号	校验和
0xEF01	XXXX	01H	00H 04H	08H	BufferID	sum

注:缓冲区CharBuffer1、CharBuffer2 的BufferID 分别为1h 和2h 应答包格式:

2 bytes	4bytes	1 byte	2 bytes	1 byte	2 bytes
包头	模块地址	包标识	包长度	确认码	校验和
0xEF01	xxxx	07H	00H 03H	xxH	sum

注: 1: 确认码=00H 表示随后发数据包;

确认码=01H 表示收包有错;

确认码=0dH 表示指令执行失败;

2: 应答之后发送后续数据包

3: 该指令不影响模块特征缓冲区中的内容。

5) 下载特征或模板 ZAZ DownChar

功能说明: 上位机下载特征文件到模块的一个特征缓冲区中

输入参数: BufferID(缓冲区号)

返回参数:确认字 指令代码:09H

指令包格式:

2 bytes	4bytes	1 byte	2 bytes	1 byte	1 byte	2 bytes
包头	模块地址	包标识	包长度	指令码	缓冲区号	校验和
0xEF01	XXXX	01H	00H 04H	09H	BufferID	sum

注:缓冲区CharBuffer1、CharBuffer2的BufferID分别为1h和2h

应答包格式:

2 bytes	4bytes	1 byte	2 bytes	1 byte	2 bytes
包头	模块地址	包标识	包长度	确认码	校验和
0xEF01	XXXX	07H	00H 03H	xxH	sum

注: 1: 确认码=00H 表示可以接收后续数据包;

确认码=01H 表示收包有错:

确认码=0eH 表示不能接收后续数据包;

2: 应答之后接收后续数据包

6) 存储模板 ZAZ_Store

功能说明:将指定的特征缓冲区(Buffer1 或Buffer2)中的模板数据存储到Flash指纹库中指定位置。

输入参数: BufferID(缓冲区号), PageID (指纹库位置号,两个字节,高字节在前)

返回参数: 确认字 指令代码: 06H

指令包格式:

2 bytes	4bytes	1 byte	2 bytes	1 byte	1 byte	2 bytes	2 bytes
包头	模块地址	包标识	包长度	指令码	缓冲区号	位置号	校验和
0xEF01	XXXX	01H	00H 06H	06H	BufferID	PageID	sum

注:缓冲区CharBuffer1、CharBuffer2的BufferID分别为1h和2h

应答包格式:

2 bytes	4bytes	1 byte	2 bytes	1 byte	2 bytes
包头	模块地址	包标识	包长度	确认码	校验和
0xEF01	Xxxx	07H	00H 03H	xxH	sum

注: 确认码=00H 表示储存成功;

确认码=01H 表示收包有错;

确认码=0bH 表示 PageID 超出指纹库范围

确认码=18H 表示写FLASH 出错;

7) 读出模板 ZAZ_LoadChar

功能说明:将flash数据库中指定ID号的指纹模板读入到模板缓冲区CharBuffer1或

CharBuffer2

输入参数: BufferID(缓冲区号), PageID(指纹库模板号,两个字节,高字节在前)

返回参数: 确认字 指令代码: 07H

指令包格式:

2 bytes	4bytes	1 byte	2 bytes	1 byte	1 byte	2 bytes	2 bytes
包头	模块地址	包标识	包长度	指令码	缓冲区号	页码	校验和
0xEF01	XXXX	01H	00H 06H	07H	BufferID	PageID	sum

注:缓冲区CharBuffer1、CharBuffer2 的BufferID 分别为1h 和2h

应答包格式:

2 bytes	4bytes	1 byte	2 bytes	1 byte	2 bytes
包头	模块地址	包标识	包长度	确认码	校验和
0xEF01	XXXX	07H	00H 03H	XxH	sum

注: 确认码=00H 表示读出成功; 确认码=01H 表示收包有错;

确认码=0cH 表示读出有错或模板无效; 确认码=0BH 表示 PageID 超出指纹库范围;

8) 删除模板 ZAZ DeletChar

功能说明: 删除模块指纹库中指定的一段(指定ID号开始的N个指纹模板)模板。

输入参数: Page ID (指纹库模板号), N—删除的模板个数

返回参数:确认字 指令代码: 0cH

指令包格式:

2 bytes	4bytes	1 byte	2 bytes	1	2 bytes	2bytes	2 bytes
包头	模块地址	包标识	包长度	指令	页码	删除个数	校验和
0xEF01	Xxxx	01H	00H 07H	0сН	PageID	N	sum

应答包格式:

2 bytes	4bytes	1 byte	2 bytes	1 byte	2 bytes
包头	模块地址	包标识	包长度	确认码	校验和
0xEF01	Xxxx	07H	00H 03H	xxH	sum

注: 确认码=00H 表示删除模板成功;

确认码=01H 表示收包有错;

确认码=10H 表示删除模板失败;

9) 清空指纹库 ZAZ_Empty

功能说明:删除模块中指纹库内所有指纹模板。

输入参数: none 返回参数: 确认字

指令代码: 0dH

指令包格式:

2 bytes	4bytes	1 byte	2 bytes	1 byte	2 bytes
包头	模块地址	包标识	包长度	指令码	校验和
0xEF01	Xxxx	01H	00H 03H	0dH	0011H

应答包格式:

2 bytes	4bytes	1 byte	2 bytes	1 byte	2 bytes
包头	模块地址	包标识	包长度	确认码	校验和
0xEF01	Xxxx	07H	00H 03H	xxH	sum

注:确认码=00H 表示清空成功; 确认码=01H 表示收包有错; 确认码=11H 表示清空失败;

10)精确比对两枚指纹特征 ZAZ_Match

功能说明:精确比对(1:1) CharBuffer1与CharBuffer2中的特征文件,并给比对结果。

输入参数: none

返回参数: 确认字比对得分 指令

代码: 03H 指令包格式:

2 bytes	4bytes	1 byte	2 bytes	1 byte	2 bytes
包头	模块地址	包标识	包长度	指令码	校验和
0xEF01	XXXX	01H	00H 03H	03H	00 07H

应答包格式:

2 bytes	4bytes	1 byte	2 bytes	1 byte	2 bytes	2 bytes
---------	--------	--------	---------	--------	---------	---------

包头	模块地址	包标识	包长度	确认码	得分	校验和
0xEF01	XXXX	07H	00H 05H	XxH	XxH	sum

注: 1: 确认码=00H 表示指纹匹配; 确认码=01H 表示收包有错;

确认码=08H 表示指纹不匹配

2: 该指令执行后,两特征缓冲区中的内容不变。

11) 搜索指纹 ZAZ Search

功能说明:以 CharBuffer1 或 CharBuffer2 中的特征文件搜索整个或部分指纹库。若搜索到,

则返回页码。

输入参数: BufferID, StartPage(起始页), PageNum (页数)

返回参数:确认字,页码(相配指纹模板)

指令代码: 04H 指令包格式:

2 bytes	4bytes	1 byte	2 bytes	1 byte	1 byte	2 bytes	2 bytes	2 bytes
包头	模块地址	包标识	包长度	指令码	缓冲区号	参数	参数	校验和
0xEF01	XXXX	01H	00H 08H	04H	BufferID	StartPage	PageNum	sum

注: 缓冲区CharBuffer1、CharBuffer2 的BufferID 分别为 1h 和2h

应答包格式:

2 bytes	4bytes	1 byte	2 bytes	1 byte	2 bytes	2 bytes	2 bytes
包头	模块地址	包标识	包长度	确认码	页码	得分	校验和
0xEF01	XXXX	07H	07H	xxH	PageID	MatchScore	sum

注: 1: 确认码=00H 表示搜索到;

确认码=01H 表示收包有错;

确认码=09H 表示没搜索到;此时页码与得分为 0

2: 该指令执行后,特征缓冲区中的内容不变。

12) 读有效模板个数 ZAZ_TempleteNum

功能说明: 读模块内已存储的指纹模板个数

输入参数: none

返回参数: 确认字,模板个数N

指令代码: 1dH

指令包格式:

2 bytes	4bytes	1 byte	2 bytes	1 byte	2 bytes
包头	模块地址	包标识	包长度	指令码	校验和
0xEF01	XXXX	01H	00H 03H	1dH	0021H

应答包格式:

2 bytes	4bytes	1 byte	2 bytes	1 byte	2 bytes	2 bytes
包头	模块地址	包标识	包长度	确认码	模板个数	校验和
0xEF01	XXXX	07H	00H 05H	xxH	N	sum

注: 确认码=00H 表示读取成功; 确认码=01H 表示收包有错;

2 系统设置类指令

指纹模块系统参数的设置请尽量默认,初步测试阶段请不要尝试更改系统基本参数,如必须要 更改,请用提供的PC端测试软件进行更改或者严格按照指令说明进行操作。

13) 设置模块系统基本参数 ZAZ_SetSysPara

功能说明:工作参数设置(参见3.3 系统配置参数)

输入参数: 参数序号 返回参数: 确认字 指令代码: 0eH 指令包格式:

2 bytes	4bytes	1 byte	2 bytes	1 byte	1byte	1byte	2 bytes
包头	模块地址	包标识	包长度	指令码	参数序号	内容	校验和
0xEF01	Xxxx	01H	00H 05H	0eH	4/5/6	xx	sum

应答包格式:

2 bytes	4bytes	1 byte	2 bytes	1 byte	2 bytes
包头	模块地址	包标识	包长度	确认码	校验和
0xEF01	Xxxx	07H	00H 03H	xxH	Sum

注1: 确认码=00H 表示 OK; 确认码=01H 表示收包有错; 确认码=1aH 表示寄存器序号有误;

15) 读系统参数 ZAZ_ReadSysPara

功能说明:读取模块的状态寄存器和系统基本配置参数(参见 3.3 系统配置参数)

输入参数: none

返回参数: 确认字 + 基本参 (16bytes)

指令代码: 0fH 指令包格式:

2 bytes	4bytes	1 byte	2 bytes	1 byte	2 bytes
包头	模块地址	包标识	包长度	指令码	校验和
0xEF01	Xxxx	01H	00H 03H	0fH	00H 13H

应答包格式:

2 bytes	4bytes	1 byte	2 bytes	1 byte	byte 16 bytes	
包头	模块地址	包标识	包长度	确认码	基本参数列表	校验和
0xEF01	XXXX	07H	3+16	xxH	结构见下表	sum

注: 确认码=00H 表示 OK;

确认码=01H 表示收包有错;

名称	内容说明	偏移(字)	大小(字)
状态寄存器	系统的状态寄存器内容	0	1
系统识别码	固定值: 0X0000	1	1
指纹库大小	指纹库容量	2	1
安全等级	安全等级代码(1、2、3、4、5)	3	1
设备地址	32 位设备地址	4	2
数据包大小	数据包大小代码(0、1、2、3)	6	1
波特率设置	N(对应波特率为9600*N bps)	7	1

14) 写记事本 ZAZ_WriteNotepad

功能说明:上位机将数据写入记事本指定Flash页

输入参数: NotePageNum(页码), usercontent (用户信息)

返回参数: 确认字 指令代码: 18H

指令包格式:

2 bytes	4bytes	1 byte	2 bytes	1	1byte	32 bytes	2 bytes
包头	模块地址	包标识	包长度	指令	页码	用户信息	校验和
0xEF01	XXXX	01H	24H	18H	0~15	content	sum

应答包格式:

2 bytes	4bytes	1 byte	2 bytes	1 byte	2 bytes
包头	模块地址	包标识	包长度	确认码	校验和
0xEF01	xxxx	07H	00H 03H	xxH	sum

注: 确认码=00H 表示 OK;

确认码=01H 表示收包有错;

16) 读记事本 ZAZ_ReadNotepad

功能说明: 读取记事本指定页数据

输入参数: NotePageNum(页码)

返回参数: 确认字 + usercontent (用户信息)

指令代码: 19H

指令包格式:

2 bytes	4bytes	1 byte	2 bytes	1 byte	1byte	2 bytes
包头	模块地址	包标识	包长度	指令码	页码	校验和
0xEF01	xxxx	01H	00H 04H	19H	0~15	xxH

应答包格式:

2 bytes	4bytes	1 byte	2 bytes	1 byte	32bytes	2 bytes
包头	模块地址	包标识	包长度	确认码	用户信息	校验和
0xEF01	xxxx	07H	3+32	xxH	User content	sum

注: 确认码=00H 表示 OK; 确认码=01H 表示收包有错;

17) 读取指纹库列表 ZAZ_ReadFpflash

功能说明:读取指纹库注册列表信息,一个BYTE数据存储8个指纹存储信息,BYTE字节每一个位代表一个信息,Bit=1表示指纹已注册,Bit=0表示指纹未注册

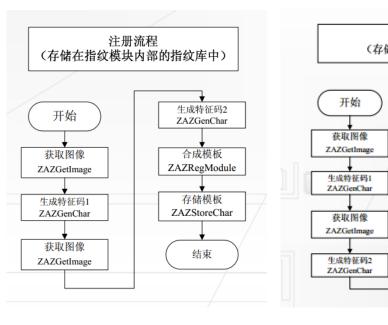
输入参数: NotePageNum(页码)

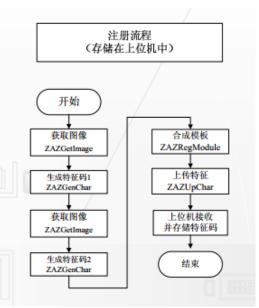
返回参数: 确认字 + FPcontent (指纹列表)

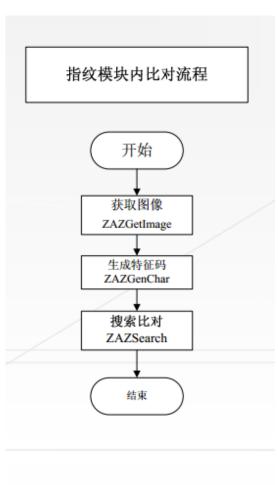
指令代码: 1FH

指令包格式:

2 bytes	4bytes	1 byte	2 bytes	1 byte	1byte	2 bytes
包头	模块地址	包标识	包长度	指令码	页码	校验和
0xEF01	XXXX	01H	00H 04H	1FH	0~3	xxH

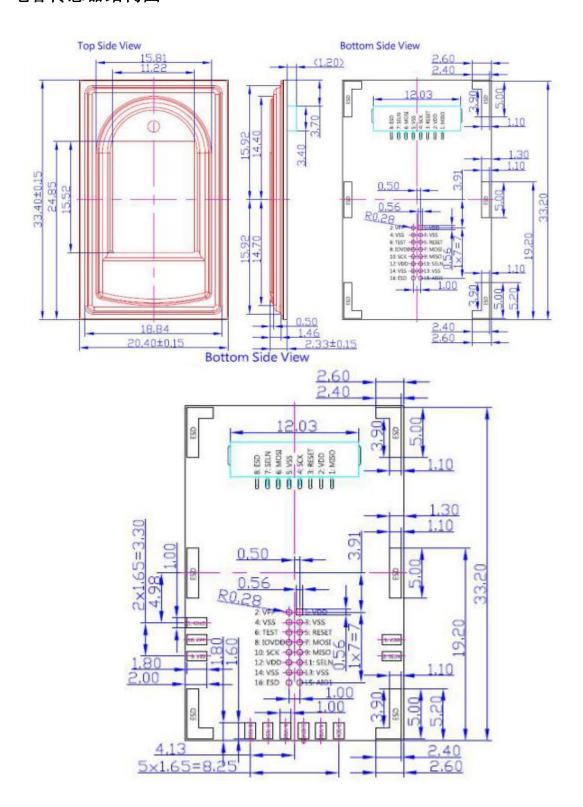

应答包格式:

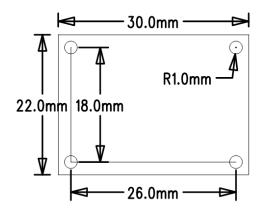

2 bytes	4bytes	1 byte	2 bytes	1 byte	32bytes	2 bytes
包头	模块地址	包标识	包长度	确认码	指纹信息	校验和
0xEF01	XXXX	07H	3+32	xxH	FP content	sum


注: 确认码=00H 表示 OK; 确认码=01H 表示收包有错:

指纹信息	01 03	注意将byte转bit数据看
解析	表示ID:0.8.9 存在指纹数据	

第六章 开发流程图





第七章 设备尺寸图

电容传感器结构图

电容采集模块 PCB 板尺寸图

